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Objectives

We seek a flexible Bayesian time series model to infer

1. Nonlinear dynamics.

2. Order and lag structure up to a pre-determined time horizon R > 1.

We extend a well-known mixture model for high order Markov chains and develop two novel priors
for probability vectors. These priors, in contrast with the popular Dirichlet distribution, retain
sparsity properties in the presence of data.

Mixture Transition Distribution model

The mixture transition distribution (MTD) model was introduced by Raftery (1985) (see Berch-
told and Raftery (2002)) for high-order Markov chains. Consider a categorical time series
st ∈ {1, . . . ,K} at t = 1, . . . , T . The Rth order MTD transition probabilities are

Pr(st = i0 | st−1 = i1, . . . , st−R = iR) ≡
R∑

ℓ=1

λℓ(Q)iℓ,i0 ,

with transition matrix Q, 0 ≤ λℓ ≤ 1 and
∑R

ℓ=1 λℓ = 1. Important lags have relatively large λℓ.
Now let J < R represent the highest-order “interaction” of lags. Introduce Q(1), a K × K
transition matrix, Q(2), a K × K × K transition tensor, and so forth. Next, introduce a mixing
probability vector across orders Λ = (Λ1, . . . ,ΛJ). The the Multi-MTD or MMTD(R, J) model
for transition probabilities is then given by

Pr(st = i0 | st−1 = i1, . . . , st−R = iR)

≡ Λ1

R∑

ℓ=1

λ(1)
ℓ Q(1)(st = i0 | st−ℓ = iℓ) +

+ Λ2

∑∑

ℓ1<ℓ2

λ(2)
(ℓ1,ℓ2)

Q(2)(st = i0 | st−ℓ1 = iℓ1, st−ℓ2 = iℓ2) + . . .+

+ ΛJ

∑
. . .

∑

ℓ1<...<ℓJ

λ(J)
(ℓ1,...,ℓJ)

Q(J)(st = i0 | st−ℓ1 = iℓ1, . . . , st−ℓJ = iℓJ) ,

where λ(j) is a probability vector of length
(
R
j

)
. Inferences for Λ and corresponding λ(j)s can

yield direct insight into lag importance.
We introduce two tractable sparsity priors for Λ and each λ(j) to shrink down to a single (or a
few) component(s), effectively performing model selection.

Priors for sparse probability vectors

Sparse Dirichlet Mixture (SDM)

The sparse Dirichlet mixture (SDM) prior model is a fixed-weight mixture of Dirichlet densities,
each with a “boost” of equivalent sample size β in one of the categories. The density for a
probability vector θ is given as

pSDM(θ;α, β) =
K∑

k=1

wk∑K
j=1wj

Dir(θ;α + βek) ,

where wk =
∏K

j=1 Γ(αj + β1(j=k)) and ek is a vector of 0s with a 1 in the kth position. For small
sample sizes and relatively large β, the SDM can be characterized as a “winner-takes-all” prior.

Stick Breaking Mixture (SBM)

This prior builds the probability vector θ through an extension of the stick-breaking construction
of the generalized Dirichlet distribution (Connor and Mosimann, 1969). In particular,

θ1 = V1, θk = Vk

k−1∏

j=1

(1 − Vj) for k = 2, . . . ,K − 1, and θK = 1 ·
K−1∏

j=1

(1 − Vj) ,

with Vk independently drawn from a mixture of two beta distributions, Vk
ind.∼ πBeta(1, η) +

(1− π)Beta(γ, δ). We encourage sparsity by setting η large, so that the first mixture component
corresponds to small probabilities in θ.

Multinomial data illustration

With K = 3 categories, we can visualize the posterior density for θ under each prior type as in
Figure 1. Note the repelling effect of the proposed priors.
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Figure 1: Kernel density estimated posterior densities for probability vector θ under
multinomial data and three prior models.

Application: pink salmon abundance

We illustrate with a time series of annual pink salmon abundance (escapement) in Alaska, U.S.A.
from 1932 to 1961 shown in Figure 2 (Alaska Fisheries Science Center, 2018). Because pink salmon
have a strict two-year life cycle, we expect even lags to have the most influence in predicting the
current year’s population.
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Figure 2: Time series of the logarithm of annual abundance of pink salmon.

The observations were discretized intoK = 7 bins by quantiles and two MMTD(7, 3) models were
fit (via MCMC) using two prior specifications: Dirichlet for Λ and each λ(j); and SDM priors
for the same. Both sets of priors favor second order with the (2, 3) and (2, 4) lag combinations
emerging as important. Shrinking down the over-specified MMTD with SDM priors yields more
decisive inference for lag relevance, as seen in Figure 3.
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Figure 3: Posterior lag inclusion weights.
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